Теорема косинусов в общем виде для любого треугольника в евклидовом пространстве выглядит так.
Теорема косинусов в общем виде |
Первая формула теоремы косинусов описывает периметр и устанавливает его зависимость от сторон и углов треугольника. Вторая формула - это двухмерный вариант теоремы косинусов. Последняя формула представляет многомерный вариант теоремы косинусов для треугольника в евклидовом пространстве с любым количеством измерений. Данная формула позволяет учитывать влияние кривизны пространства в любых пространственных направлениях при переходе от евклидового пространства к не евклидовым и обратно.
Теорема косинусов для треугольника в не евклидовом пространстве будет иметь более громоздкий вид. Каждый геометрический элемент формулы, представленный в виде степени, может быть представлен в виде сомножителей, имеющих свои собственные коэффициенты кривизны пространства.
Формула периметра треугольника может быть представлена в двух различных видах. В одном случае периметр можно выразить через сторону и сумму косинусов прилежащих углов. В другом случае это можно сделать через сумму двух сторон треугольника, умноженную на косинус угла между ними.
Теорема косинусов для периметра треугольника |
Геометрическое изображение теоремы косинусов для периметра треугольника можно представить следующим образом. Это ещё одна картинка, которая поможет установить взаимопонимание между нами и инопланетянами.
Теорема косинусов |
Математики говорят, что теорема косинусов является обобщением теоремы Пифагора. Они ошибаются. Теорема косинусов описывает зависимости между сторонами и углами треугольника в пространстве. Теорема Пифагора описывает несколько другие вещи. Многомерность в этих двух теоремах так же реализуется по-разному. В теореме косинусов задействованы показатели степеней, в теореме Пифагора количество пространственных измерений связано с числом слагаемых в формуле.
Теорема косинусов в общем виде является не просто набором математических символов, это безупречно работающая динамическая система. Некоторые моменты в работе теоремы косинусов мы рассмотрим более подробно.
Больше о новых взглядах на математику и её проблемах смотрите на странице "Новая математика"