Теперь упражнение по сдвиганию бедер проделаем с нормальным треугольником. Если мы уменьшим основание равнобедренного треугольника до нуля, мы получим два совпадающих отрезка. Сумма углов этого вырожденного треугольника равна 180 градусов. А как иначе? Он же треугольник! Угол при вершине становится равным нулю, значит углы при основании принимают значение 90 градусов. Два угла по 90 градусов дают в сумме 180 градусов - всё сходится.
Вырожденный треугольник |
Как и следовало ожидать, периметр вырожденного треугольника (он же "два совпадающих отрезка", он же "один отрезок") оказался равен двум длинам его стороны. Напомню, мы считаем, что обе стороны такого вырожденного треугольника равны.
Рассматриваем второй случай. Вернемся к фитнесу. Ставим ноги в исходное положение - на ширину плеч. Раздвигаем ноги в стороны до тех пор, пока мы не сядем на поперечный шпагат. Свой подвиг я на ютуб не выкладываю - хвастаться нечем, признаюсь честно. Не многие читательницы могут это продемонстрировать. Про читателей я вообще молчу. Но в математике такой трюк выполняется элементарно просто - самим математикам на шпагат садиться не нужно.
Если мы совместим верхнюю вершину треугольника с основанием, мы получим второй вид вырожденного треугольника. Это отрезок, равный сумме двух других отрезков. Сумма углов здесь тоже равна 180 градусов, только теперь это величина всего одного угла.
Вырожденный треугольник |
Как видите, в вырожденном треугольнике (он же "сумма отрезков") второго типа теорема косинусов для периметра работает безотказно. Почему после шпагата ноги разные? Так треугольники бывают не только равнобедренные, но и разносторонние.
Будем считать, что терему косинусов для периметра мы проверили на работоспособность и работает она безотказно. Одномерный отрезок (напомню, треугольник - это двухмерная геометрическая фигура) можно считать нижней границей применения теоремы косинусов. Где у теоремы косинусов верхняя граница? Для ответа на этот вопрос, мы перейдем к рассмотрению теоремы косинусов в общем виде.