понедельник, 30 апреля 2018 г.

Теория множеств

Теория множеств - это каменный век математики. Только шаманы знают, что к какому множеству принадлежит. Давайте посмотрим на теорию множеств со стороны и раскроем некоторые секреты шаманов.

Если верить Википедии, а сомневаться в правильности изложенных там текстов у меня нет оснований, "теория множеств стала основой многих разделов математики". Что же такое множество? Смотрим в той же Википедии.

Множество. Определение множества. Математика для блондинок.
Множество

"Одно из ключевых понятий математики ... не имеет определения". Это как? А точно так же, как в религии - никто не знает, что такое "душа", но все свято верят в её наличие. Не сомневаюсь, что подобным образом древние шаманы рассказывали о духах: дух леса, дух воды... Заметьте, понятие "множество" никак не связано ни с алгеброй, ни с геометрией, ни с физикой. Подобный подход позволяет вешать на уши любую лапшу, всё равно никто не проверит. "Любой объект обычно считается множеством", а если объекта нет - тогда это "пустое" множество. Логика очень даже понятна и проста до идиотизма - даже если бублика нет, дырка от бублика всё равно остается. Дышите глубже и не поперхнитесь дыркой от бублика.

Для понимания сути теории множеств необходимо рассмотреть ещё одно математическое понятие - функция. Смотрим.

Функция. Определение функции. Математика для блондинок.
Функция

Понятие функции основано на теории множеств. И так, цитируя математиков, получаем: функция - это "интуитивное представление" о "соответствии между элементами двух" штучек, которые "не имеют определения" и представляют из себя "совокупность разных элементов, мыслимую как единое целое". Уффф... Очень научное объяснение. Впрочем, от шаманов другого ожидать не приходится: "интуитивно понятно", "очевидно", "естественным образом" - это их уровень.

Но, давайте посмотрим на теорию множеств сквозь призму функций, а точнее, через "соответствие между элементами двух множеств". Каждому элементу из стада охотников ставится в соответствие один или несколько элементов из стада добычи, каждому элементу из стада добычи ставится в соответствие один или несколько элементов из стада охотников. И только шаманы знают, что к какому стаду принадлежит и как правильно делить добычу. Так что же такое теория множеств? Это теория стада. Кстати, что получится, если объединить стадо (множество) математиков и стадо (множество) баранов: бараны с математическим образованием или математики с бараньими мозгами? Я не знаю, что говорит теория множеств о результатах подобного объединения, но в реальности у математиков будет отличный пикник с шашлыками.

Я ничего не имею против теории множеств как одного из математических инструментов. Но выстаивать целые "научные" теории на таком примитивном и неопределенном понятии - это уже слишком. Любая теория должна проверяться практикой, даже математическая. Я вам покажу пример практического применения теории множеств на примере таких понятий, как "множество" и "мультимножество".

Больше о новых взглядах на математику и её проблемах смотрите на странице "Новая математика"

Комментариев нет:

Отправить комментарий